VOL. 1, NO. 4, JULY-AUGUST 1964

J. AIRCRAFT 211

Aerodynamic Matrix Procedure for Low Aspect Ratio Wings

Georee W. MARTIN Sr.*
Martin Company, Orlando, Fla.

A matrix method is presented for calculating the rigid and induced airload distribution for
low aspect ratio wings with supersonic leading and trailing edges and inwardly raked tips.
This method is applied to the static aeroelastic analysis of a set of missile fins for which experi-
mental data is available for both the rigid and flexible cases. Comparisons are given be-
iween the theoretical and experimental values for several aerodynamic coefficients. Good
agreement is shown in all cases for which data is available. The general construction of the
matrices used in the aeroelastic analysis is also presented.

Nomenclature

@i = pressure coefficient induced at point j due to a unit «
of aero block ¢

b/2 = wing semispan

b, = pressure coefficient induced at point j due to a unit
5 of aeroblock &

C; = rolling moment coefficient

Ch = pressure coefficient

Cw = normal force coefficient

fler, yr) = [z — 2r)? — BNy — yr)}'7

f@p, yp) = (& — 2)* — By — yp)?]V?

K; — K, = constants used to define aerodynamic « and & dis-
tribution

K;, Ks = constants used to normalize C'y and C,; data

K7 = constant used to normalize roll rate data

L; = load applied to structural point 7 « 1b

M = Mach number

my = B tan ¢

Py, Py = pressure on the lower and upper surface, respec-
tively, «— psi

q = dynamic pressure « psi

N = region of integration for the potential function

14 = freestream velocity « fps

w; = deflection of load point 7

xz, Y = field point location

Zp, Yo = pressure point location

Ya, Yo = gpanwise intersections of the forward Mach traces
with the wing leading edge

Y1, Yo = Jower and upper spanwise bounds of a strip or por-
tion of a strip that affects a pressure point

8 = (M2 — 1)1

€ = wing leading edge semi-apex angle

& = wing tip inward rake angle

a(B) = body angle of attack ~ rad

a(y) = angle of attack distribution « rad

a¥s = angle of attack or incremental angle of attack,

respectively, of an aerodynamic block

Introduction

N the static aeroelastic analysis of low aspect ratio wings
the effects of chordwise bending must be accounted for in
both the structural and aerodynamic programs.

The change in airload distribution due to flexibility can be
solved for, assuming linear aerodynamic and structural char-
acteristics, by the methods of matrix algebra. Applying
the methods of matrix theory in the same manner as in Ref. 1
to the problem of a simple wing with no control surfaces, the
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equilibrium deflections, under a given rigid air loading, can be
obtained as follows:

L1 L1 L1
: +9: =1 M
Ln rigid Ln ) induced Ln equil

L1 Wy
: = q[B][corr][A][int]; :
LY inavced Wn } equil
@
L1 Wy
[F]g : =<
Ln equil Wy equil
or
Ly wy Wy
3 : = [F]“lg : g = [S]{: 3)
L, equil Wh Y equil Wh } equil

combining (1, 2, and 3)

Ly w wL

: + ¢q[Blicorr}[A][int]< : = [S}¥ : Y]
n ) rigid Wn equil Wr, equil

which reduces to

L1 wsy
[[S]— q[B]lcorr]{A][int]]* < : =4 (5)
Ln rigid Wy equil

where

[S] = stiffness matrix in which the coefficients
relate the loads at the structural load
points to the deflections of these points
~1b/in.

[F] = flexibility matrix in which the coefficients
relate the deflection of the structural
load points to the applied loads at these
points ~ in./lb.

q = dynamic pressure, psi ‘

[B] = matrix used to apply the airloads to the
structural load points ~ in.

[eorr] = empirical matrix used to correct the pre-
dicted aerodynamic load distribution
when the appropriate test data is avail-
able.

[A] = aerodynamic matrix in which the coeffi-
cients relate the loading, per unit g,
over the wing to the unit « or 6 of a
prescribed segment of the wing.

[int] = interpolation matrix used to convert from
the structural deflections defined by the
structural matrix to thé o« and & dis-
tribution required for the aerodynamic
matrix.
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Fig. 1 Area of integration for ¢ in the tip region.

L1

= column matrix of equilibrium loads ap-
L,L equil plied to the structural load points.

= column matrix of rigid loads applied to
Ln rigid the structural load points

= column matrix of induced loads applied
Ln induced to the structural load points

g : g = due to the applied rigid load
Wn equil

The change in airloads due to flexibility can be obtained
from (2) using the results of (5), and the final airload dis-
tribution is then obtained from (1).

The total load or moments due to the distributed loading
can be obtained by using an integrating matrix [I]:

L load
71« : = {pitching moment (6)
equil

L, rolling moment

The required structural matrix is obtained by either
analytical or experimental means and all other matrices,
with the exception of the aerodynamlc matrix, can be ob—
tained from the geometry of the wing and the locatlon of the
structural load points.

The required aerodynamic matrix is the major topic of this
paper. The method presented here is an extension of Ref. 2
and is applicable to wings with supersonic leading and trail-
ing edges and inwardly raked tips. The effect of interacting
tip regions required for low aspect ratio wings is included.
A sample wing is shown for which experimental data is
available for both the rigid and flexible cases. Comparisons
are given between the predicted and experimental values
obtained in both cases.

Aerodynamic Matrix Procedure

The lifting pressure distribution on & thin wing, moving at
supersonic speed, can be obtained by replacing the wing with
a zero thickness plate in the shape of the camber surface of the
original wing. A potential function ¢ is available from which
the pressure distribution can be obtained. The potential
equation, as presented in Ref. 3, is

__7r a(z, y)dydr
h wffs [ — x,)2 — By — yp)2]M2 )
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where S is the region of integration as defined by the forward
Mach traces and the planform geometry.

The total lifting pressure coefficient C, can be obtained from
Eq. (7) since it is directly related to the potential:

o Pz Pe 400
T q B Vor

a(z, y)dydx
™ bx ffs [ — 2,02 — By — y,)2]2 ®)

In the regions of the wing in which S is contained within the
boundaries of the wing only, the pressure coefficient can be
obtained from Eq. (8) as follows:

Oa/dxdydx

4
" {ffs (& — 270 — By — g2 +

7 ady
e T ym]w} ©)

where y, and ¥, are the spanwise limits of the intersections
of the forward Mach traces with the wing leading edge with
the line integral taken along the wing leading edge.

In the tip regions, the area S includes both regions of the
wing and the upwash field associated with the tip regions.
The upwash field, influencing the pressure distribution in this
tip region, is shown in Fig. 1.

The area cancellation procedure presented by Evvard*
can be utilized to eliminate the upwash calculation in the
region DEF of Fig. 1. The area cancellation is used in the
evaluation of 0¢/dz, using the boundary condition that C, =
0 along the subsonic trailing edge of the raked tip rather than
¢ = 0 asis used on a streamwise tip or subsonic leading edge:

_4 B ady da/Oxdydx }
Cozp 1 {f A famyn T ALP famys) T
¢ ady D ady D ady
{f FGns 72) s S el e e s
do/Oxdydx Oa/Oxdydz E  ady
J. ) o i yp>} 10

BCDF F@p, y2) DEF F@s, yo)

{f B f(xF, yF) f CD f (x‘:lz”)

D ady Oar/dxdydx
f F fnym | BfCDF Jwr, 37)

f Oa/dxdydx E  ody }
I f L (11
b Famun T Ip fam unf Y

Evvard has shown that Eq. (11) can be used to eliminate
the corresponding line and surface integrals in Eq. (10). The

C =

Pzp,yF
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Fig. 2 Block division and point locations.
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pressure coefficient evaluated at x,, y, therefore reduces to

4 B ady
OP;;I,J,,, o7 fA (@ — ) — By — y»)?]V? *
4 Oc/Oxdydx
1p)? — BHy — yp)*]Y?
In the matrix technique used subsequently, it is assumed

that @ = a(y) for a given wing which eliminates the surface
integral and allows C, to be defined only by the line integral

o, 4% [ 5 ady (138)

e T owJa (@~ )t = By — )t

By a similar technique, the pressure coefficient in the region
affected by both tips can be evaluated.
Case I. Reflected traces do not cross on the planform:

T ygrp @ — 12

4 B
¢ == [, x
ady
[(x—=,)% — B2y — y»)?]"/?

(13b)

4 (B
sz_;fA X
ad

y
[(x—2,)? — By — yp)?]*?
(13¢)

It is important to note that the line integrals along the re-
flected traces used for points in the influence of a subsonic
leading edge are not encountered here. These line integrals
are eliminated because of the change in boundary condition
from ¢ = 0 at the leading edge for a subsonic leading edge
wing to d¢/dz = 0 along the raked tip used in this analysis.

Superposition Technique

Because of the linearity of the basic potential function
¢ a matrix can be constructed relating linearly the pressure
induced at a point on the wing to the unit rotation, « or o,
of a given segment of the wing.

The coefficients of the aerodynamic matrix are constructed
as follows: 1) the wing planform is divided into a series of
blocks over which « is assumed to be constant, and 2) a series
of pressure point locations is distributed over the wing sur-
face in any manner desired (see Fig. 2). The pressure induced
at a point z,, ¥, can then be found from the following relation:

N
O,,j = Z a;; 5 (14:)
i=1
where N is the total number of wing block divisions, a.; the
pressure coefficient induced at point j due to a unit a of block
1, and a; the angle of attack of block 1.
Equation (14) can be transposed to a more easily handled
form as follows:

b (N=D)
Co; = 2, o + 2, b (15)
£=1

1=1

where J is the total number of blocks 7 along the wing leading
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Fig. 3 Nine pressure point regions.

edge; ai; and «; are as previously defined; by, is the pressure
coefficient induced at point 7 due to a unit rotation of the re-
gion contained between the leading edge of block K, the
wing trailing edge, and the spanwise boundaries of block K;
and §; is the difference between the angle of attack of block
K and the region immediately upstream of block K.

In using Eqgs. (13) to evaluate the terms of the pressure
coefficient matrix the superposition technique used in Ref. 2
is employed. The locations of the pressure points and all
the equations presented are again referenced to the location
of the apex of the wing or subwing being analyzed.

Intersection Equations for Camber Matrix

The method for calculating the pressure distribution covers
the nine regions of Fig. 3. In all cases it is assumed that
da/dz = 0 so that the only term affecting the pressure at a
point is of the form

4 prw ady

- 1

S M ey e S
The pressure coefficient equation for all cases in regions

I-VI then will be of the same basic form. The ¢, induced

at a point in regions VII or VIII, when the forward Mach

traces cross on the planform, is of the form

I ady
™ fya (@ — z,)% — By — y,)2] (17)

The solutions of Eq. (16) for strips or portions of strips that
lie within the bounds ¥,< y < , as given in Ref. 2 are 1)
strips on the left side of the wing,

C _ 4m1a
Ppyp) Br(m® — 1)V2
l: P (m2 — D(Byz/my) — xp — mBY»
sin . _
Byp + mlxp
(m2 — 1)(By1/m1) — Tp —
6.7/1) + mlxp

X

sin~!

mlﬁyp] (18)

and 2) strips on the right side of the wing,

C N 4M1C(
PEpwr)  Ba(m® — 1)172

[sin“‘ (1 = m®)(Bya/m) — 25 + muByp

,By;z — MhTp
it &= ) By/m) — @, + mlﬁyp] 19)
By, — Mz,
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Fig. 4 Linear integration intervals.

where
8 = (M2 — 112
€ = wing semiapex angle
my = (8 taneg

11, ¥2 = lower and upper spanwise bounds of a strip or
portion of a strip that affects a point

The solutions for Eq. (17) are identical with (18) and (19)
except for a change in sign.

The required limits of integration, used in programing this
procedure, for a pressure point in any of the nine regions are
given in Tables 1 and 2.

Special Equations

where
My = 7rta,ne2
e = inward rake angle of the tip
B [b Me xp:l
= JACIE T T ot
T T T Y m L2 \m vt g
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__b_ m[ _ﬁ?]
Yo = T T BT T w2

Lingt = %[xLl + TR, + 6(ny - le)]

1
Yint = Ya + 3 (Tine — Try)

Special Condition, Region IX

X, > Xa+ BYs — BY,, set Cp = 0 for all strips.  This
sets the limitation on the number of reflections that can be
accounted for. In this case all points that fall behind the
reflected tip trace of the wing being analyzed, are assumed
unaffected by the wing. Special coding instructions are
needed for the case of an unswept wing since tan ¢ — « as
e — 90°. These instructions are given in the same order as

Special Equations

1 b
TRy, = 1+m (:Byp + 2, — ,35)
YR, = g—i— %mz

b
S

Tin' = §[&L + Tr + By — Yr)]
It X, > (X' + BYs" — BY,) set C, = 0 for all strips of the
wing being analyzed. The C, equation used for all strips or
parts of strips for an unswept wing is
_B1 — y»)
1T I
o= 7| e

[mj@ B~ ) _
»

A change of sign is again used when the forward Mach traces

cross on the planform.

Table 1 Limits of integration, swept leading edge

Limits of integration

Regions Boundary condition Left side Right side
bfm + 1> m (BYp — Tp) m e my (BYp — Zp) my (xp + Byp)
I and 1T <8 — M iPhe — To) < <50 o <y<
o ””—52( s Bur B (mt1) B m—-1 Y% (m+1
b/m + 1) my (Byp — Zp) ma (Byp — Zp)
II1-v ~ - <zp < — = <y < —ee— =t Jy <
"2( - B < g m ¥ Y g (m—1) 7
B[y n <m1 + 1)@] my (Bym — Tm) mi (zr, — Byr)
? m /2 8 (1 + my) B (1 —m)
VI-VIII T4 + Bya — Byp = p >
1
oo+ ()s]
ny 2
a) Mz < — By "™ gy 4+an) <y < M gy, +own) <y <
1Zint = Yint Blm — 1 YL L) SY = B(ms + 1 Y1, Ly AR
(reflected traces do not my '
cross on the planform) 8(ma _|_ 1 (Byr. — om) 8(1 — )(le Byr:)
in - im VP E— y — 1 < < __.L _ 3 <
b) mi&ing > —BYine ,3(1 (ﬁyR zp) <y < 50— my) (zm — Bym) Sy <
(reflected traces cross on my
the planform) Flmn — 1) (Bym + zm) B(ml + 5 By, + z1,)
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Integration Procedure

The preceding section presents the method used to compute
a matrix of aerodynamic influence coefficients relating the
pressure induced at a point to the unit « or 8 of a fixed region
of the wing. An aerodynamic matrix can in turn be con-
structed which relates the ¢;c induced over a given incremental
z length, with y fixed, to the unit « or & of the fixed region of
the wing. This is accomplished by integrating the calculated
pressure coefficient distribution.

The pressure coefficient matrix [4.,] is in the form

i Az . . . . Gin
[Aep] =

Amy Amy =+ * * Qmn

where a7j relates the pressure coeflicients induced at point ¢
due to a unit « or § of wing segment j.

The integrated matrix is of the same general form with the
exception that the coefficients relate the value of

Tnt+i
ﬁn Cpdz

obtained because of the unit « or & of the prescribed wing
segment. This is shown graphically in Fig. 4. The equa-
tions used to integrate the given equations are obtained by
linear interpolation between points.

N=(n+i—1)

f,:m Coudx = Y,

N=n

@y — aw)

3 @1

(CPZN+1 + CPIN)

If a pitching moment matrix is required, the integration takes
the form

- N=(n4i-1)
fz Cordz = > {szlv(xi\q—l = zn) X
n N=n
ZTyyr + oy ,
(B1E2) = oy = Conyed X

(@%”)m + 3w — zm} 22)
The terms of the moments matrix would then relate the incre~

mental value of
.
[yt
Zn
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POINT LOCATIONS LOAD POINT LOCATIONS

Fig. 5 Aero block, structural block, and structural load
point locations.

obtained over the desired segments of the given chord because
of a unit « or § of a fixed segment of the wing.

Construction of the Aeroelasticity Matrices

The aerodynamic method presented was used to predict
the aeroelastic effect on the air load distributions of the wing
shown in Fig. (5). The load conditions analyzed were for
the following:

1) Wing at angle of attack: (asz = 0), a(y) = K;

2) Wing at angle of attack with the aerodynamic wing «
distribution determined from Beskins’ upwash equa-
tion of Ref. 5:  a(y) = az{l + [Rs¥/ Rz + 1)%]}

3) Rolling configuration: (az = 0), a(y) = Kz + Ky

4) Rolling moment due to a bend tab at the wing trailing
edge: 6 =K,

In the aeroelastic analysis of the four preceding load condi-
tions it was assumed that the body acted as a complete re-
flection surface. The effect of the flexibility on the rolling
moment prodused by a single wing panel was then investi-
gated in each of the load conditions.

The general construction of the matrices required in the
aeroelastic loop is presented in this section. The required

Table 2 Limits of integration, unswept leading edge

Limits of integration

Regions Boundary condition (only one equation required for both sides)
b z z
< g2 — -y < fut 4
I and II xp__ﬂ<2 yp> 173 s N 8
. b Tp 1
III-V Bl — v ) <zp £ yp — — Jy < - (Byr, — Zn,)
2 B B
b
ﬁ(yp + —2->
VI-VIII ' + Bys' — Byp < zp <

b
.3(?/17 + é)

a«) xint’ S 0

reflected traces do not

cross on the
planform

b) zins’ >0

(reflected traces cross

on the planform)

1
Swss + on) Sy < %(ﬂym — zm)

1
E}(ﬂsz - sz) < Yy < %(ﬂyLz + xLz)
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Fig. 6 Aera block division used to represent the bent tab.

structural flexibility matrix was determined experimentally
under the supervision of V. L. Hining of the Martin Company.
The [B] matrix was constructed assuming that the loading
calculated at the centerline of the structural load block repre-
sented the average loading over the block. The load on a
block, which is applied to the corresponding load point, then
is the local loading along the centerline times the width of
the block.
dy -
d»
ds

L drd

The wing division for the aerodynamic matrix, the strue-
tural load block division, and the structural load points are
shown in Fig. 5.

The chordwise and spanwise bounds for the structural load
block division were obtained by bisecting the chordwise di-
mension between points and spanwise dimension between
rows of points, respectively. All the load calculated in any
structural load block division was then beamed to the struc-
tural load point contained in that block.

The o for the aerodynamic blocks is taken as the differ-
ence in deflection between the front and rear load points
divided by the distance between them, i.e.,

ar = (we — w)/ (@ — 21) (23)

Since the required aerodynamic distribution is in the form of

10
M=18
wls M2l w2482 |
08
06
%2
©
a212
frag {4 0.4
Sis™
© (1= CONSTANT|
02
2,000 4,000 6,000 8000 10,000

q~PSF

Fig. 7 Typical curve for the flexibility effects on load
conditions 1, 2, and 3.
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Fig. 8 Flexibility effects on load condition 4.

a and 6, the required interpolation matrix is obtained by sub-
tracting the appropriate o’s defined by Eq. (23) to obtain
the required 6’s. (Note that, as explained before, the leading
edge blocks are the only ones that use the a distribution.)
The correlation matrix was a unit diagonal matrix sinee pure
theory was used throughout the analysis.

The integrating matrix (I) is of the form

1111 ---1
l=\zixex324 - - - 2
NYaYsYs o * - Yn

where X; and Y, are the distances of load point ¢ from the
pitch and roll axes, respectively.
The required rigid loads are calculated simply by the matrix

produet:
L1 (03}
: = ¢[B][A]Y :
Ln rigid 5m rigid

using the matrices of the aeroelastic loop. The column matrix
of the rigid o and é distribution is input for the desired load-
ing. The ¢ distribution for the loading due to the bent tab
was approximated by setting 6 = K, for regions A, B, and C
of Fig. 6.

The aerodynamic procedure presented was used to evaluate
the change in roll rate due to aeroelastic effects on the missile
fin shown in Fig. 5. The roll rate was to be produced by the
bent tab at the trailing edge of the fin as shown in Fig. 6.

The calculated flex/rigid ratios are shown in Figs. 7 and 8 -
for the load conditions. Figure 8 presents the results for
load conditions 1, 2, and 3, since they were identical. Com-
parisons are also given in Figs. 9 and 10 between the predicted
and experimental rigid values of normal force coefficient
on the fin with body at angle of attack (load condition 2) and
the rolling moment coeflicient per degree of tab deflection for
several tab bend angles (load condition 4). Good agreement
is shown in both cases.

THEORY

pa— 040 EXPERIMENT
>\

075 A2

CN ey o T .

0.50]

0.25

1.4 16 1.8 20 22 24 26
MACH NUMBER

Fig. 9 Comparison of experimental and theoretical fin
loads.
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THEORY 1.2
EXPERIMENT O 5° TAB ANGLE —]
5 7° TAB ANGLE THEORETICAL RIGD —F——u__|
s O 11° TAB ANGLE |0 _ROLL RATE
\\
08
1.0 SYMBOL
E = o EXPERIMENTAL
3 — g &~ ROLL RATE
g\e 4| 08 THEGRETICAL FLEXIBLE
T (¥ ’*\Eg 3 \_\ ROLL RATE o
S os '_‘8 o | |
X ; S L] -
o4 -
1.4 1.6 18 20 22 24 0.2
MACH NUMBER
Fig. 10 Comparison of experimental and theoretical bent
tab rolling effectiveness. TIME

The normal force coefficients for fin alone were obtained
from test data using the K factors of Ref. 6 as follows:

Kpw
CNfin = KW(B) + KB(W) (CNbody and fin ~ CNbody alone)

The analytical results in Figs. 7 and 8 showed that the
roll rate would vary greatly as a function of dynamic pressure
and would be degraded from the desired value due to flexi-
bility effects. The change in roll rate at a given value of ¢
and Mach number could be obtained as follows:

- 1> (24)

[Clﬂex/Clrigid] bent tab
lelex/clrigid] roll damping

In the initial test shots the predicted loss in roll rate was
substantiated as is shown in Fig. 11.

The correction for this flexibility problem was obtained
by inspecting the effect of flexibility on load condition 2,
i.e., using a differential fin incidence, with ap = 0, as the
exciting force in roll. The flex to rigid ratios in this case
were very similar to that of the damping in roll case, load
condition 3, which would indicate that flexibility would not
affect the roll rate to any extent, referring to Eq. (24) again.
Subsequent tests using the differential wing incidence as the
roll producing device, again substantiated the predicted
values.

9 change = 100 <[

Conclusions

A rapid method for calculating rigid or flexible airload
distributions has been presented. (As an indication of the

Fig. 11 Roll rate comparison.

speed of the coded program, the runs for the data in this
paper consumed approximately one minute for each Mach
number on the IBM 7094. This run time includes the ecal-
culation of the aerodynamic matrix and the rigid loads for the
four load conditions analyzed in addition to the static aero-
elastic solution for each one of these conditions at seven values
of g). Comparisons were given between experimental data
and theoretical predictions for a specific configuration,
using both rigid model and flexible model data, and good
agreement was shown in all cases.
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